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1 Introduction

A fundamental element of comprehensive pulverized-fuel combustion modelling is the description
of the turbulent gaseous flow field within the furnace. As part of a program to develop a three-
dimensional coal combustion code, a non-reacting gas flow dynamics model has been developed.
This flow model, GAS3D, has been demonstrated in a variety of industrial configurations including
corner-fired, cross-fired, and wail-fired furnace geometries. This paper discusses the components
and capabilities of the niodel and presents comparisons between experimental data and model
predictions for a. wall-fired furnace.

The emphasis of this paper i1s on evaluating model performance. Experimental data has
been obtained froni Consolidation Coal Company for a wall-fired furnace. This configuration has
been simulated with GAS3D using three different turbulence models. A description of the flow
patterns predicted within the furnace are given. Comparisons are made between the predictions
and experimentai data and between the different turbulence models.

2 Solution Method

Steps common to all finite difference numerical techniques are'the formulation of the equations,
discretization of these equations, and the solution of the resulting coefficient matrices. GAS3D
couples the momentum and continuity equations with the SIMPLE algorithm (1), utilizes a
first-order hybrid upwind and central differencing scheme, and iteratively solves the difference
coefficient matrices by approximating them as tridiagonal systems, which are solved with the
Thonias algorithm.

The SIMPLE (Semi-Implicit Method for solving Pressure Linked Equations) algorithm is a.
technique for solving the equations of motion and continuity in a decoupled fashion. It requires
a initial guess of the pressure field which is then updated through the calculation of a pressure
correction. This method of solving the pressure field can require hundreds of iterations and
alternative numerical techniques are being investigated. These alternatives include solving the
equations in a coupled manner, similar to Vanka’s BLIMM method (2) and the use of multigrid
algorithms (3).

Finite difference coeflicient matrices are often very sparse and the direct inversion of these
matrices is rarely practical. Due to the first-order differencing of convection terms employed in
GAS3D, the matrices formed are heptadiagonal. Each natrix is first approximated as a series
of three tridiagonal matrices. These tridiagonal matrices are then solved individually with the
Thomas algorithm and the solution procedure is repeated several times to resolve the coupling
in the three coordinate directions. This matrix solver was initially observed to account for up
to 65% of the overall run time on & CONVEX C-1 computer. Reordering the inner loops of the
Thomas algorithmn elintinated recursion and allowed for vectorization of the solver. This resulted
in a significant reduction in matrix solution{~ 80 %) and overall computational (~ 40 %) time.
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3 Model Capabilities

The model allows for simulations to be inade in either the Cartesian or polar coordinate system.
Initial validation of the model was made through comparisons with the predictions from an
extensivity evaluated axisymmetric gas dynamics code (4). A case was first run and documented
with the axisymmetric model. This axisymmetric geometry was input and flow was simulated
with the three-dimensional model for both coordinate systems. Predictions from the 3-D polar
case were indistinguishable from the axisymmietric run. Cartesian predictions were similiarly
validated through comparison.

GAS3D has been written in a modular mauner to aid understanding and ease modification.
The model consists of a maiu driver and forty-four subroutines, each made up of an average of 134
lines of FORTRAN coding. All boundary conditions are controlled by a single three-dimensional
array which specifies each cell {computational node) as being part of an inlet, flow field, or a
wall (intrusion). Coniplex geometries can be easily simulated by input to this geometry array.
Thus, a preprocessor can prepare this array for model input. Inlet velocity profiles, including
swirling buriers, can also be input directly to the code. Inlets and outlets on all six faces of
the computational domain are possible through the same array. There is no limitation to the
number of inlets or outlets on any one face, nor the number of faces having iulets, outlets, or
both. However. if an outlet is located within a recirculation zoue, an overall mass balance cannot
be adequately closed and the code will not fully converge. The model will also handle structural
intrusions at any poiut in the flow field. Intrusions are needed to model such important features
as inlet quarls, ash bins, tube banks, clipped corners, and the furnace nose. Test cases have been
successfully converged which included constricted exits, flow around successive baffles, and bluff
bodies surrounded on all six sides by the flow field.

4 Turbulence Models

The differential equation set employed in the model was derived from the vector forms of the
conservation equations for mass and momentum (5). The equations were manipulated into a
standard steady-state form to ease differencing. The instantaneous form of the expanded conser-
vation equations were Favre averaged to allow for a computationally feasible length scales:
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The Reynold’s stresses, ptsit;, where 4; is the fluctuating component of velocity in the ith direc-
tion, are modelled wtih the Bousinesq hypotheses:

—tt; = — Vi 22)

The time averaged differential equations can be manipulated to resemble the instantaneous form of
the equations by combining the molecular viscosity, s, with the eddy diffusivity. This differential
equation set, for both the Cartesian and cylindrical coordinate systems, is presented in its Favre
averaged form in Table 1.

Turbulence closure models have been developed for varying levels of sophistication. The most
basic models, such as the coustant eddy diffusivity model and Prandtl’s mixing length model,
contain siruplifications which normally restrict their application. The most commonly used tur-
bulence model is the two-equation k-¢ model. Its popularity is due in part to the disadvantages
of its more sophisticated alternatives, namely, second-order closure models and large-eddy sim-
ulations. These alternatives are hindered by the enormous increase in computational resources
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needed to either solve the Reynolds stress transport equations in second-order closures or resolve
the fine time and spacial scales required for large-eddy simulations.

The simplest turbulence assumption is that of constant eddy diffusivity. Because turbulence
is normally generated due to shear forces in the gases, this assumption is rarely true. The a priori
determination of an average eddy diffusivity is difficult. A slightly more sophisticated closure
scheme is the Prandtl’s mixing length model. This model, given by Equation 3, velates the eddy
diffusivity to the mean velocity gradient.

= pl2 |V 3)

The main drawback with this inodel is the determination of the mixing length, I, for complex
flows. The value for [, has been empirically determined for a number of simple jets and flows
but a value of I,, for recirculating and three-diinensional flows is difficult to determine.

The k-¢ turbulence model was introduced to provide a means of modeling the transport of k,
the turbulent kinetic energy, and ¢, the dissipation of turbulent kinetic energy. Trausport equa-
tions are devised for both k and e that include terms to model convection, diffusion, production,
and dissipation of these quantities. Tle differential equations for k and e, including the generation
term, G, used in the model are given in Table 1. These equations are solved for each gas phase
iteration. After obtaining local values for k and e, the local eddy diffusivity is calculated from
the Prandtl-Kolmogorov relationship:
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GAS3D currently contains options for the use of a constant eddy diffusitivity, the Prandtl’s mixing
length turbulence model, or the standard k-¢ model.

5 Reactor Flow Patterns

The pilot scale furnace simulated in this paper is operated by Cousolidation Coal Corporation in
Liberty, Pennsylvania. The furnace is approximately 1'—0 scale of a full utility boiler and is fired
from four swirled burners. The burners are located on a single wall in a diamond configuration
and are all swirled in the same direction. The outlet is located above the burners on the east wall.
Details about the furnace configuration can be seen in Figures 1 and 2. The furnace geometry
is similiar in design to large industrial boilers and contains an ash bin, furnace nose, and several
clipped corners. This geometry was modelled with a grid that contained 35 points in the x or
depth direction, 45 points in the y or width direction, and 65 points in the z or height direction.
Converged results for this 102375 node case were obtained using the three turbulence models
described previously. Each turbulence niodel produced significantly differing results.

The constant eddy diffusivity model produced the simplest flow field. This flow field contained
only two large scale vortices. The largest vortex was predominantly visible in the x planes,
flowed in the clockwise direction, and extended over the entire length of the reactor. No large
recirculation zones were predicted in the z planes, but burner centerline recirculation was present.
Figure 1A illustrates flow patterns at a normalized width of 0.5. This figure shows a strong vortex
centered below the burners that extends approximately half way up the reactor. The shaded areas
in these figures represent reactor walls and the arrows signify velocity vectors constucted from the
two compouents of velocity parrallel to the designated plane. The length and direction of each
vector represents predicted velocity for the location specified by the vector tail. In order to reduce
congestion, less that one half of the computational nodes are represented with vectors. There are
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two sizes of unfilled arrowheads and their ratio along with the scale for the small vectors is given
in Figures 1 and 2.

Figure 1B provides the flow field prediction for the center y plane using a mixing length
turbulence model. This figure shows a highly viscous type flow, especially in the near-burner
region and the absent of major vortices in this plane. The viscous flow is generated because the
mixing length model produces high eddy diffusivity values in the high velocity gradient regions
around the burners. The x plane predictions show high velocities along the north wall which
decrease to near stagnation along the south wall. Strong counter-clockwise swirling vortices are
found in all the z planes starting in the ash bin and extending beyond the furnace nose.

The k-¢ turbulence model yielded the most complex flow field prediction. Figure 1C reveals
numerous swirling patterns in this single plane. Seperate vortices in the ash bin, above the burn-
ers, and behind each burner, as well as strong burner centerline recirculations are all predicted.
Clockwise swirling vortices are observed in nearly all the z planes. Numerous localized vortices
can be found in the predicted x planes. The k-¢ turbulence model predicted a central recircula-
tion zone with gases flowing downward in the center of the reactor, but lowing upward near the
east,west,north and south walls. Figure 1 illustrates the vast differences in both magnitude and
direction of the velocities predicted by the three turbulence models.

6 Data Comparisons

Velocity measurements in the Consol furnace were made with a } inch pitot tube connected to
an electro-manometer. The y component of velocity was not included in these measurements.
Experimental velocity data were obtained for 50 points all above the burners. The filled arrow-
heads in Figures 1 and 2 represent these data points. In Figure 2, all 50 data points are shown
with the k-e predictions. It should be noted in Figure 2 that the data points are for the vertical
component of velocity only.

The predictions in Figure 1C agree significantly better than the predictions of Figures 1A or
1C. The agreement between predictions and data in Figures 1A and 1B is poor. For example,
the k-e simulation is the only model that predicted downward flow in the reactor center and
higher velocities on east wall than on the west wall. The majority of experimental vectors in
Figure 1C agree with the predictions in both direction and magnitude. The obvious exceptions
are the center data vectors at a normalized height of 0.58 and 0.70. There are several possible
reasons for these decrepancies. The most probable cause is that the central recirculation zone is
being overpredicted by the k-¢ model. An earlier study on two-dimensional swirling flows faulted
the k-¢ model with overpredicting the length of recirculation zones (6). The transient nature
of turbulence could create difficulties in correcting determining direction and magnitude of gas
velocity in a recirculation zone. The steady-state velocity predicted by GAS3D could be difficult
to verify in a region where turbulent eddies are constantly passing. More precise inlet conditions
could also aid isolated the cause of these decrepancies.

Figures 2 shows predicted flowfields at three different depths: Figure 2A represents a x plane
near the burners and east wall; Figure 2B represents a x plane at a normalized depth of 0.5;
and Figure 2C is near the west wall. The swirl in the secondary of the burners drives the lower
clockwise vortices found in Figures 2A and 2B. A counter clockwise swirling pattern can also be
found in outlet in the upper part of Figures 2A and 2B. Although not always exact in magnitude,
the k-e model appears to predict the trends shown by the data. In Figure 2A, the model predicted
the change from higher north wall velocities to higher south wall velocities as the gases flowed
upward. The two data points in direct directional disagreement with predictions seen in Figure
1C can also be found in Figure 2B. It is probable that if the central recirculation zone length
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could be better simulated the agreement in the top data plane (height = 0.70) would improve.
The general agreement illustrated in Figures 1C, 2A, 2B, and 2C is reasonable considering the
complexity of the flow.

The presence of a fine vortex structure in the k-e predictions presents some interesting ques-
tions. Additional work is needed to determine the dependence of vortex structure on coarseness
of the grid. Additional vortex structure could be revealed by converging this case with finer grid
sizing. Previous investigators have found that the inlet conditions are vital to correctly simulating
turbulent flow. Further investigation is warrented into determining the sensitivity of solutions to
such parameters as swirl number and inlet velocity profile.

7 Conclusion

A three-dimensional flow model has been developed and validated for simulating complex enclosed
flow. The selection of turbulence model has been shown to greatly affects flow predictions. The
k-¢ model appeared to represent significant predictive improvement over the sinpler tuwrbulence
models. Although the k-¢ model appeared to overpredict the size of some recirculation zones, it
yielded predictions in general agreement with experimental data. Further study is warranted to
determine the applicabilty of other turbulence models and the effect of grid resolution and inlet
conditions on predictions.
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Table 1. Differential Equation Set for GAS3D

Part A. Cartesian Coordinate System

Apue) | Apbe)  Apig) 0 (r 6¢) o (r 0¢) 9 (r 0¢) -5,

dx dy 8z 8x \'%0r) "oy \ %y 8:\ ‘Bz
Equation ¢ Ty S
Continuity 1 0 0
X Momentum [T »‘;—% + % s aa—y #gg—; + 573; /Q%
Y Momentum R -%f + j—: /lg‘g—: + g—; p,g—: + ;—z u,g—':
Z Momentum o - (p 8 j‘; )+ & e 32
Turbulent Energy kK £ G- pe
Dissipation Rate € b (f) (1G — c2p€ )

where:

Part B. Cylindrical Coordinate System

Xpig) | Oprog)  ANpig) 3( a¢) 0 (Tré@_) 9 (F¢6_¢)
or

r _ A _L (e -
dr ar 20 o \"%ox)  or 90\ r 08 ¢
Equation ¢ I, S,
Continuity 1 0 0
X Momentum a . + 1‘5% ;:e% + % per?—,j: + (% ;zt%‘f)
R Momentun: [ETA . + 15"; yveg% A ;1,% - %) -
L B Zﬂr“—‘ + pi?
6 Momentum TS B &”J) + & (;1,% - y.!u"x) +£ [(%) (‘Z—‘; +_21(:—')] +

)~ pi e
Turbulent Energy k£ oG- pe)
Dissipation Rate e = (1f) (e1G ~ cape)

where:
G = {2()+ (3)'+ (4 2)] + (B +5)'+
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U-W Velocity Vectors

Large to Small Vector Length Ratio = 20
Velocity Scale: 1inch = 144 m/s !
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Figure 1. Comparison of velocity predictions and experimental data at a normalized width of 0.5
for the following turbulence models: A, constant eddy diffusivity; B, simple mixing length model:
and C, k-¢ model.
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V-W Velocity Vectors

Large to Small Vector Length Ratio = 20
Velocity Scale: linch= 144 m/s
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Figure 2. Comparison of velocity predictions and the vertical component of velocity measured in
t,hsrge x planes: A, normalized depth of 0.17; B, normalized depth of 0.50; C, normalized depth of
0.83.
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